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Introduction Cruise Phase |
The Radiation Assessment Detector (RAD) on board the Mars Science Laboratory's RAD was already taking measurements for large parts of the cruise phase _
Curiosity rover is a highly capable instrument designed to measure the radiation to Mars to serve as a proxy for the expected radiation exposure inside a g
environment encountered at the surface of Mars. Mass = 1.56 kg | spacecraft for potential future manned mission. i Dose rate (silicon) " por-
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~ Understanding this radiation is of great importance for E o 10° = !
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= radiation can prove to be hazardous for human life and has : I | | N .
= | to be well analyzed to assess the risks it poses. () 270° . . ! ! ! ! ! ! ﬁ *‘:.._
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Since the successful landing in Gale crater on 08/06/2012, . D 2 i My
= RAD has been conducting its measurements of the surface radiation environment | . Figure 2: Left: Drawing of the upper shell of the MSL spacecraft. The RAD Field- e Aeorhad ' Date (2(11;_,20 :h2) — g b
; : : . : Of-View (FOV) is indicated by the green cone. Right: Shielding depth in the in the igure 4. AbSOroed aose rate measurements auring tne cruiseé phase conaucte e
almost continuously with varying measurement cycles of 32 minutes (first ~300 sols), ) : , e
, - y ry g. _y - ( _ ) _ E upward RAD FOV. Zenith angle corresponds to radius of the circle (indicated by with the B (black) and E detector (red). During cruise RAD observed 5 SEP | &
s (Cile, sekl e LTEie, slue 16 il e o sy glie eiyoidlive) ﬁ the white numbers). While most of the FOV was more or less free of shielding events (indicated by the arrows). Note that these are not free space | [ .=
In addition to these surface measurements, RAD was also already operating for large | ‘e jisilenaeiiessnaced) Bl g e g Ay SO CHERS (/G il measulements Ut tatierinsiasithe spacecratlibening snis(aing (SeeHIGLIS). -
- : : : k arachute) with depths up to ~100 g/cm®. s
| parts of the 253-day cruise to Mars. Combined, these measurements give unique .'1? . P ) ptns up 9 During the cruise phase, RAD measured an average absorbed dose rate | [
. insight into the expected radiation exposure for a potential manned mission to Mars. i of ~480 uGy/day (during solar quiet times). 23-5
¥ MSL-RAD . B
Here, we give a brief overview of the RAD sensor head and its measurement ‘SSsg N PN : The main contribution to the encountered radiation environment stems | [==.
capabilities. Furthermore, we present dose rate measurements of the radiation & ; from GCRs. Besides this constant contribution, RAD also detected 5 | [* -
environment during the cruise phase and on the surface of Mars, and during the Solar :_"'i ! l h : Solar Energetic Particle (SEP) events with short-term increases of the | = =
Energetic Particle (SEP) events detected so far. iy 3 Lt 3 g dose rate by 1 to 2 orders of magnitude during the 253-day cruise phase. -
P~ T - -~ - > Rt -y - SR W In terms of dose equivalent, these 5 SEP events contributed ~5 % to the |
- 100 3 ; Ete total dose encountered during cruise. _"'
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" i SEP events are highly variable in occurrence rate and intensities — ;

larger events could contribute significantly more to the total dose (> order | | . :
of magnitude). N
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during SEP events*: "J"-.
Date (2011-2012) » Absorbed dose rate: ~480 uGy/day 9 s
 Quality factor: ~3.8 A4 QMG G 0 IS L
Figure 3: Comparison of RAD and ACE-SIS proton counts during 7-15 Mar: 19.5 mSyv 2

e Dose equivalent rate: ~1.84
mSv/day 17-18 May: 1.2 mSv

Total SEP: 24.7 mSv
*Zeitlin, et al., Science (340), 2013. Total dose cruise: 465 mSv

the March 2012 SEP events (events 3 and 4 in Fig. 4).

RAD particle fluxes during SEP events can be compared to data from
other spacecraft that saw the same event — insight on particle
propagation in the heliosphere.

Radiation Measurements on the Martian Surface
Since the landing in Gale crater on Aug 6 2012, RAD is the first-ever
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v : _ Figure 5: Daily averages of absorbed dose rate measurements on the Martian can be seen. This plot shows preliminary analysis factors — e.g., pressure-
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The 3 SEP events observed by RAD so far are marked by the arrows and
numbers. The B dose is corrected for contributions from the rover RTG and
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.' Figure 1: Schematic of the RAD sensor head

absorbed dose into dose equivalent. ¢ Neutral (61 Hourl Prturbat
- converted to dose into water. Total E Dose Perturbation SR 2 LUV AR
| Neutral Particle Detection: Charged Particle Detection:
¢ _ _ . || The absorbed dose rate on the surface is lower (~210 uGy/day) 4 ctl1tt. wor
- | * Particles are detected in D and E (C and * Particles hﬂe to pass through the compared to the one encountered during cruise (~480 uGy/day). A large . - Af SEEEEER : e
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|| functions of D and E allow separation into * Stopping particles come to rest in The average quality factor is also lower on the surface, 3.05 compared L i i L P {
neutrons and y-rays detectors B through E and their to 3.8 in cruise — this is mainly due to the average shielding on Mars ° 4 : , e 4 ; : ’ .
| i ' i being higher than in the cruise phase. Applying the average quality factor o
- D is a high-Z material — effective for y- total energy is known — differential g hig | Y pplying g Q_ y Hour
_ energy spectra (up to several to the absorbed dose yields an average surface dose equivalent rate
ray detection _ , - - Figure 7: Left: Mean perturbation of the E dose over the course of one sol. Right:
hundred MeV/nuc dependina on ion of ~0.64 mSv/day (cruise: 1.84 mSv/day).

5 T2 s 2 el BlReiE T el TR s [ [ aresa . P 9 Mean perturbation of the E neutral particle counter over the course of one sol. While

_ gh p _ . — Ny species) The radiation environment is susceptible to changes both on long- and the dose perturbation is anti-correlated to the daily pressure trend, the neutral
section for neutron interactions  Penetrating particles deposit energy | short-term bases: solar modulation of the incoming GCR flux, seasonal counter is correlated.

« Inversion method allows reconstruction i deieeiers A direueh = (e pressure cycle on Mars (long-term); diurnal pressure variations and RAD sees a diurnal variation in the dose rate caused by recurring
of initial neutron and y-ray spectra (~10 to bart) _ integral spectra heliospheric rotation (short-term) pressure changes due to the thermal tide; the dose rate changes are anti-
several hundred MeV) | L | The 3 SEP events observed so far have been comparably weak, with the correlated to the pressure variations (higher pressure — lower primary

1. ee ta | y br. Jan Roenler tor more different ion species and isotopes (1 || the radiation dose of a factor of 2 (in single observations). pressure (higher pressure — higher secondary production rate). See
information (Tuesday - 11.30 h). < 7 < 26) Rafkin, et. al., JGR Planets 119 (3), 2014 for more details.
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