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Template Method Validation 

The VERITAS Array

Template Analysis 

> Templates generated from simulated iron showers  
(Corsika 6.99, grisudet for ray tracing).
> Energy range 10 to 100 TeV.
> Tested template analysis on simulated iron showers 
after full detector simulation.
> Confirmed that template prediction, knowing true 
energy/ core position, reproduces mean collected charge 
per pixel.
> Checked energy resolution/bias and core position 
resolution when starting the fit at the true values. No bias 
in energy reconstruction for E>40 TeV.
> Tested reconstruction of core position and energy, using 
geometrical stereo-reconstruction as starting point.
> Geometrical reconstruction often gives a bad core 
position, leading to bad fit.
> Energy bias due to cut on image size, but improvement 
in core position.
> Working on improving starting poins for the likelihood fit.
> Goodness of fit distribution is shown for simulated iron 
showers (orange) and proton showers (blue; main 
background), scaled to expected number of events.
> In 3000 hours: expect about 78000 iron showers, 
270000 showers from protons and other light elements 
(after pre-cuts).

Imaging Air Showers &
 Direct Cherenkov Technique

> Very Energetic Radiation Imaging Telescope Array 
System.
> Array of four IACTs, located in southern Arizona, USA.
> Started operations in 2007.
> Mirror diameter 12 m.
> FOV 3.5 degrees, about 500 pixels per camera.
> Sensitive to gamma-ray induced showers from 80 GeV to 
tens of TeV.
> Several upgrades: one telescope moved in 2009, cameras 
upgraded in 2012.
> Science topics include gamma ray astronomy, dark matter 
searches, astroparticle physics.
> See Holder 2008.

DIRECT CHERENKOV LIGHT
FROM HEAVY NUCLEI IN COSMIC RAYS. 

Conclusions

Imaging of Air Showers
> Imaging Air Cherenkov Telescopes 
(IACTs)
> Charged components of air showers 
radiate Cherenkov light.
> Light pool on ground: few hundred m 
radius. 
> Air shower imaged by IACT camera, 
typical extentsion 1°.
> Size, shape, orientation of image used 
to reconstruct energy, direction, species 
of primary.
> Improvements by telescope arrays due 
to stereoscopic reconstruction.
> Main goal is γ-ray astronomy, large 
background of charged cosmic rays.

Direct Cherenov Technique
> Charged primary particles radiate direct 
Cherenkov (DC) light even before starting 
a shower.
> DC light very concentrated in camera 
(~1 pixel), at the front of the shower 
image.
> DC Intensity ~Z² -> separation of heavy 
and light nuclei.
> Separation best at large Z.
> Use shower image to reconstruct 
energy.
> See Kieda 2001, Aharonian 2007
 

 

One of the VERITAS cameras

Idea:
> Model probability distribution of 
collected charge per pixel given energy 
E, direction of primary particle (Xs, Ys), 
height of first interaction h and position 
of shower core (Xp, Yp).
> Also need uncertainty of detector 
response         and pedestal variance 
> Use maximum likelihood method to 
estimate parameters for a given shower 
by fitting camera images to model 
predictions.
> Use goodness of fit for background 
separation. 
> Up to now only used for γ-ray 
astronomy, eg. Le Bohec 1998.
> For iron analysis: Extend template 
method to take shower-to-shower 
fluctuation into account.

 

> Existence of cosmic rays known for more than 
hundred years.
> Make-up: Protons and other fully ionized nuclei.
> Energy spectrum: Almost smooth power law.
> Origin and composition not fully understood.

Direct detection experiments
> Balloons/space borne detectors.
> Good at small Z.
> Detection area ~1 m²
> Best at MeV to TeV energies.
> See e.g. Ahn 2009.

Indirect detection - EAS arrays
> Detect remnants of air shower on ground
> Charge determination difficult
> Detection area ~10¹² m² 
> Best at energies of 10¹³ eV and above.
> See e.g. Abbasi 2010, Cazon 2012.

Indirect detection - IACTs
> Detect Cherenkov light from air showers
> Charge/energy reconstruction challenging, but 
possible
> Detection area ~10  m²⁴
> Cover intermediate energies (TeV range).
> See  Aharonian 2007.
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Cosmic ray flux for different elements. Plot from the 2013 
Review of Particle Physics, J. Beringer et al. (Particle Data 
Group), Phys. Rev. D86, 010001 (2012) 

 

 

Advantages:
> Can combine data taken on all targets (up to 1000 h/year). 
> Most detected showers induced by cosmic rays.
> Systematic uncertainty complementary to other cosmic ray 
experiments (atmosphere largest source of systematic uncertainty).
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Mean and spread of number of photo electrons in pixel (from simulations): 

Likelihood per pixel:

Goodness-of-fit:

> Template-based analysis can be used to extract 
energy of primary particles from iron-induced showers
> Goodness-of-fit can be used for background 
separation.
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Hadronic air shower, from Aharonian 2007
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