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> Existence of cosmic rays known for more than ik 3
hundred years. = -
> Make-up: Protons and other fully ionized nuclei. 1.0F _coco0, E
> Energy spectrum: Almost smooth power law. ~ Hex 1072 i
> Origin and composition not fully understood. 4:- ® -
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> Detect remnants of air shower on ground 'S - SX 10" o . i “oe Moot I
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Indirect detection - IACTs 2 Ty . 3 3
> Detect Cherenkov light from air showers - 2 QEL/ISSS 2 25?0'3 °'°\%® ““ui 1. ]
> Charge/energy reconstruction challenging, but  107*F e CAPRICE  CREAM i \‘f\ &
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> Cover intermediate energies (TeV range). 107°F  RUNIOB ¥s -
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Cosmic ray flux for different elements. Plot from the 2013
Review of Particle Physics, J. Beringer et al. (Particle Data
Group), Phys. Rev. D86, 010001 (2012)

The VERITAS Array

> Very Energetic Radiation Imaging Telescope Array
System.

> Array of four IACTs, located in southern Arizona, USA.

> Started operations in 2007.

> Mirror diameter 12 m.

> FOV 3.5 degrees, about 500 pixels per camera.

> Sensitive to gamma-ray induced showers from 80 GeV to
tens of TeV. S Ak
> Several upgrades: one telescope moved in 2009, cameras
upgraded in 2012. h
> Science topics include gamma ray astronomy, dark matter
searches, astroparticle physics. 5308
> See Holder 2008. | ccoese Ny
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One of the VERITAS cameras

Imaging Air Showers &
Direct Cherenkov Technique

Imaging of Air Showers

> Imaging Air Cherenkov Telescopes
(IACTSs)

> Charged components of air showers
radiate Cherenkov light.

> Light pool on ground: few hundred m
radius.

> Air shower imaged by IACT camera,
typical extentsion 1°.

> Size, shape, orientation of image used
to reconstruct energy, direction, species
of primary.

> Improvements by telescope arrays due
to stereoscopic reconstruction.

> Main goal is y-ray astronomy, large
background of charged cosmic rays.
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Shower direction DC-light

Direct Cherenov Technique

> Charged primary particles radiate direct
Cherenkov (DC) light even before starting
a shower.

> DC light very concentrated in camera
(~1 pixel), at the front of the shower
image.

> DC Intensity ~Z2 -> separation of heavy
and light nuclei.

> Separation best at large Z.

> Use shower image to reconstruct
energy.

Hadronic air shower, from Aharonian 2007

Advantages:

> Can combine data taken on all targets (up to 1000 h/year).
> Most detected showers induced by cosmic rays.

> Systematic uncertainty complementary to other cosmic ray

Template Analysis

E=30 TeV, H=33 km

Idea:
> Model probability distribution of
collected charge per pixel given energy

D=80 m, H=33 km

E, direction of primary particle (Xs, Ys), S .0 D=20m q:: s & s
height of first interaction h and position S osf il : B o
of shower core (Xp, Yp). S ot . g
> Also need uncertainty of detector o = N 2
response Ope and pedestal variance Tped &g

> Use maximum likelihood method to camera x (o]
estimate parameters for a given shower o 111 o
by fitting camera images to model N
predictions. -
> Use goodness of fit for background

separation. !
> Up to now only used for y-ray ‘
astronomy, eg. Le Bohec 1998.

> For iron analysis: Extend template

method to take shower-to-shower i :

fluctuation into account.
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Mean and spread of number of photo electrons in pixel (from simulations):
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> Templates generated from simulated iron showers
(Corsika 6.99, grisudet for ray tracing).

> Energy range 10 to 100 TeV.

> Tested template analysis on simulated iron showers
after full detector simulation.

> Confirmed that template prediction, knowing true
energy/ core position, reproduces mean collected charge
per pixel.

> Checked energy resolution/bias and core position
resolution when starting the fit at the true values. No bias
in energy reconstruction for E>40 TeV.

> Tested reconstruction of core position and energy, using
geometrical stereo-reconstruction as starting point.

> Geometrical reconstruction often gives a bad core
position, leading to bad fit.

> Energy bias due to cut on image size, but improvement
In core position.

> \Working on improving starting poins for the likelihood fit.
> Goodness of fit distribution is shown for simulated iron
showers (orange) and proton showers (blue; main
background), scaled to expected number of events.

> |n 3000 hours: expect about 78000 iron showers,
270000 showers from protons and other light elements
(after pre-cuts).
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> See Kieda 2001, Aharonian 2007 experiments (atmosphere largest source of systematic uncertainty). Goodness = /2 NDE
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Energy Resolution | | | | o | > Template-based analysis can be used to extract
- Preliminary 1 energy of primary particles from iron-induced showers

> Goodness-of-fit can be used for background
separation.
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