

Flux rope eruption (at the limb)

Visualize a classical flux rope eruption, as in models !

(Forbes et al. 2001, 2006, Vrsnak 2008)

- Flux rope grows due to flare reconnection
- Very hot flux rope : 7-11 MK !

(Cheng et al. 2011, Reeves & Golub 2011)

Flux rope eruption (at the limb)

AIA 131 Å

(Cheng et al. 2011)

Flux rope eruption (on the disk)

Wood & Howard 2009)

Is a twisted flux tube (flux rope) present <u>before</u> the eruption ?

Evidence of flux ropes

Magnetic extrapolations are able to reconstruct a flux rope even within a complex B topology

(Valori et al. 2010)

Non-linear force-free magnetic field computations from vector magnetograms

flux rope partly H<0 emerged trace of: magnetic tongues: trace of azimuthal B axial **B** First days of an AR emergence new bipole P 70 Mm 17:36 UT 2-Fgb-97 3-Feb-97 17:36 UT 4-Feb-97 17:36 UT time

ARs formed by flux rope emergence

=> apparent rotation of the AR

(Luoni et al. 2011, Lopez Fuentes et al. 2000)

grey levels: magnetogram

MHD simulation of emergence

grey levels: "magnetogram", arrows: plasma velocity

(Hood et al. 2009, Archontis & Hood 2010)

(Magara & Longcope 2003, Archontis et al. 2004, Manchester et al. 2004, Fan 2009, Murray & Hood 2008)

Crossing the convective zone

Hydrodynamic vortexes destroy the flux rope **if** it is not twisted enough

flux tubes need to be **significantly twisted** (typically > 1 turn) to cross the convective zone and to form active regions

(Emonet & Moreno Insertis 1998, Cheung et al. 2006, Fan 2008)

Formation of a new flux rope (above the photosphere)

emergence of the flux rope top -> sheared arcade

pressure depression behind emerging field

- => converging flows
- => reconnection of arcades
- => new flux rope formation

after "photospheric" reconnection

(with a larger B strength, the new axis can be below the original axis which emerges above the photosphere)

> (Manchester et al. 2004, Archontis et al. 2009 Mac Taggart & Hood 2009)

Formation of flux ropes also in decaying active regions !

Many CMEs in decaying ARs !

•••

Sigmoid formation before eruption

Sigmoid formation & eruption

1h before eruption: reconnection J1 with J2 => S & c loops

Sigmoid formation & eruption

running difference. AIA 94 Å

(Liu et al. 2010)

In agreement with previous studies

(Manoharan et al. 1996, Moore et al. 2001, Gibson et al. 2002, Canfield et al. 2007 ...) Mechanisms for CME initiation

Which force drives CMEs ?

Which force lifts up this huge mass ?

Which force drives CMEs ?

Which force lifts up this huge mass?

- Unloading ? The dense plasma mostly falls down after the prominence ejection starts
- Buoyant?

not the mechanism !

- Low corona : $low-\beta$ (p << B²/ 2µ₀) and sub-Alfvénic regime B²/ 2µ₀ dominates all other energies

Different physics than in the convection zone:

eruption driven by magnetic forces

MHD simulation of CME launch

Similar to previous studies

(van Ballegooijen & Martens 1989, Forbes & Isenberg 1992, Amari et al. 2000, 2003, 2007, 2010, Fan & Gibson 2004, Mackay & van Ballegooijen 2006)

Flux rope formation and growth

Flux rope eruption & physical effects

which chapt		
max B>0	> by 50 %	
max B<0	> by 30 %	
B flux	>> by 10 % on	Ŋ

The role of the external field drop-off with height

Analytical model

Loss of equilibrium <--> torus instability

(Démoulin & Aulanier 2010)

Kink instability

TRAC E 195

MHD simulation

(Ji et al. 2003, Török & Kliem 2005)

Instability present when : twist > 2.5 to 3.5 π

-> Large writhing (helical deformation of the flux rope) (Hood & Priest 1981, Amari et al. 1999, Fan & Gibson 2004, Török et al. 2004)

Kink instability: confined eruption

ribbons + filament eruption (writhing)

=> confined eruption

(Guo et al. 2010)

Kink instability triggering a CME

kink instability + upward perturbation
=> flux rope moving upward

If B decreases fast enough with height => loss of equilibrium / torus instability

the kink instability could bring the flux rope high enough to trigger the loss of equilibrium / torus instability => CME

(Török et al. 2010)

Testing the field decay index for eruptions

(eruptions studied by: Williams et al. 2005, Green et al. 2007, Schrijver et al. 2008) <u>Also</u>: stronger field (factor 3) at low altitude in **failed eruptions** compare to **successful eruptions**

Simplified conclusion

<u>During the eruption</u>: large amount of flux reconnected below the flux rope => further build up of the flux rope observed in situ as a magnetic cloud (or a hot flux rope)

To test with more examples / challenge with SDO/AIA and other instruments !

END